

Management

Understanding of climate-ecosystem interactions

n '

Action

Lack of data
Dissemination
Accessibility
QA/QC

Climate Variability and Climate Change in Western Natural Areas

Implications for Management
Challenges for Monitoring and
Mitigation

Stephen Gray, USGS

Western US Topography

Annual Precipitation

Western US Topography

January Precipitation

Importance of Snow in Western Ecosystems

- Low elevations
 - Streamflow/runoff
 - Aquatic/riparian systems
 - Surface water in arid environments
- Mid-elevations
 - Soil moisture recharge
 - Controls on plant community composition
- High elevations
 - High productivity
 - Support many systems of interest (e.g. whitebark pine)

Trends in timing of spring snowmelt (1948-2000)

Not surprisingly, these timing and snowpack changes are attributable to long-term winterspring warming trends across the West.

As a result of streamflow timing trends, the warm-season fraction of annual streamflow has declined.

SYR - FIGURE 2-4

Trends toward earlier snowmelt runoff are projected to continue throughout the West.

Projected streamflow timings, 2080-99 vs 1951-80

Estimating Influences of Warming on SNOW vs RAIN

- -Widespread shift from snow to rain
- -The West is by far the most vulnerable
- -Snow to rain transitions of over 25% annual precip would be common

Derived from UW's VIC model daily inputs, 1950-1999

Temperature Change At High Elevations

Projected Change-Mean Annual Temp

Projected Change-Dec-Feb Mean Temp

Projected Change-June-Aug Mean Temp

Temperature Change At High Elevations

Projected Change-Mean Annual Temp

Projected Change-Dec-Feb Mean Temp

Greatest change projected at high elevations in NH mid-lattitudes

Projected Change-June-Aug Mean Temp

But what about precipitation? Overall, climate models provide no consensus regarding the future of precipitation in the West.

WHAT ARE CURRENT MODELS PROJECTING FOR THE WEST?

Warming by +2 to +7°C, more at higher elevations

Uncertain precip. changes, probably not significantly outside range of nat. var.

Reduced snowpack, earlier snowmelt, earlier snowmelt discharge, even if only the temperature changes

Potential Impacts of Switch from Snow to Rain? Melt Timing?

- Group exercise: Five key impacts for natural areas management
- Info needed to...
 - Monitor
 - Predict
- Sources of information... (Kelly Redmond and Connie Woodhouse)

Greater Yellowstone Climate

Vital Signs Monitoring: Seeps and Springs

Climate Station Network of the Greater Yellowstone - Bighorn Canyon Area

Data Sources: Natural Resources Information System - Montana; University of Idaho Gap Analysis Program; University of Wyoming GISc Online Database; USGS National Elevation Dataset; the National Atlas Online Database

Meteorologic Climate Stations of the Greater Yellowstone - Bighorn Canyon Area

by Regional Equal Interval Elevation Ranges

Data Sources: Natural Resources Information System - Montana; University of Idaho Gap Analysis Program; University of Wyoming GISc Online Database; USGS National Elevation Dataset; the National Atlas Online Database

Climate Station Network of the Greater Yellowstone - Bighorn Canyon Area

by Regional Equal Interval Elevation Ranges

Data Sources: Natural Resources Information System - Montana; University of Idaho Gap Analysis Program; University of Wyoming GISc Online Database; USGS National Elevation Dataset; the National Atlas Online Database